Speech Levels In Various Noise Environments Pdf

Posted on by admin

How do people have conversations in noise and make themselves understood? While many previous studies have investigated speaking and listening in isolation, this study focuses on the behaviour of pairs of individuals in an ecologically valid context. Specifically, we report the fine-grained dynamics of natural conversation between interlocutors of varying hearing ability (n = 30), addressing how different levels of background noise affect speech, movement, and gaze behaviours.

Active Listening

We found that as noise increased, people spoke louder and moved closer together, although these behaviours provided relatively small acoustic benefit (0.32 dB speech level increase per 1 dB noise increase). We also found that increased noise led to shorter utterances and increased gaze to the speaker’s mouth. Surprisingly, interlocutors did not make use of potentially beneficial head orientations. While participants were able to sustain conversation in noise of up to 72 dB, changes in conversation structure suggested increased difficulty at 78 dB, with a significant decrease in turn-taking success. Understanding these natural conversation behaviours could inform broader models of interpersonal communication, and be applied to the development of new communication technologies.

While many previous studies have investigated speaking. (n = 30), addressing how different levels of background noise affect speech. In terms of speech patterns, speakers in noisy environments. Download PDF. In this paper, an improved multi-band spectral subtraction (I-MBSS) algorithm is proposed to enhance the speech degraded in various noise environments. This algorithm uses a novel noise estimation approach to estimate the noise power adaptively and continuously from the nearby speech frames without explicit speech pause detection.

Speech Levels In Various Noise Environments Pdf Files

Furthermore, comparing these findings with those from isolation paradigms demonstrates the importance of investigating social processes in ecologically valid multi-person situations. SpeechAverage speech level significantly increased as noise level increased (F(2.075,60.182) = 271.72, p. Noise level also affected conversational structure, showing an interaction with speech type – i.e., individual or overlapping (F(1.40,19.56) = 31.38, p. GazeListeners focused on their partner’s face (defined as 10° above to 10° below the height of the tragi, with a horizontal span of 20°) for an average of 88% of each trial (see Fig. ). People spent a different proportion of time focused on the mouth (10° zone below the tragi) compared to the eyes (10° zone above the tragi) (F(1,116) = 8.38, p = 0.007, ηp2 = 0.22), and how much time they spent attending to the mouth vs eyes varied by noise level (F(4,116) = 11.92, p. In this study, we measured speech parameters (such as speech level, turn duration, and inter-speaker pause), head movement, and gaze, to comprehensively investigate the strategies spontaneously used by individuals holding conversations in noisy environments. We have shown that while individuals employ potentially beneficial strategies during increased background noise (i.e.

By increasing speech level and decreasing interpersonal distance), these adjustments only partially compensate for the increase in noise level. Indeed such behaviours amount to only 0.32 dB benefit per 1 dB noise increase. Other potentially beneficial strategies included using slightly shorter utterances, and increasing looks to the speaker’s mouth. While conversation structure remained constant until the noise level reached 72 dB, with minimal speech overlap and a high proportion of individual speech, a significant increase of overlapping speech at 78 dB suggests that at this level such strategies were not enough to avoid the turn-taking structure of conversation breaking down.These findings demonstrate that the strategies people use during an interactive conversation are not the same as those used when speaking or listening in an empty laboratory, or even during an interactive task if it is highly constrained.

For example, we did not find speakers to increase utterance duration with noise (which could indicate slower speech), as found in the interaction study of Beechey et al. Several possibilities could explain this difference. It is notable that the task given to our participants was relatively free, in comparison to a path-finding task, and so they may have chosen to change the content of their speech as opposed to slowing their production rate. Furthermore, Beechey et al. Varied noise level with simulated environment, and these environments changed between, rather than within, trials.

This design may have led participants to employ different strategies depending on the environment, rather than adjusting their use of strategies depending on noise level. The interesting prospect that strategy adjustment is based on noise level, while strategy selection is based on other parameters of the background noise, should be tested systematically in future.Our data also showed inter-speaker pauses to shorten rather than lengthen. While shorter utterances may have simplified information processing for the listener, increasing pause duration would have provided further benefit. However, it is possible that prior findings of increased pausing in noise are a result of turn-switch difficulties, as opposed to being a strategy used to facilitate listener processing. Finally, we saw no use of head orientation to improve audibility, and report small changes in speech level and interpersonal distance. We suggest that this is because during an interactive conversation, interlocutors must deal with two conflicting goals: (1) facilitating communication, and (2) facilitating interpersonal connection.

While strategies to achieve goal 1 have been addressed using isolation paradigms, goal 2 may mediate these strategies as well as eliciting other, purely social, behaviours. Hence interactive paradigms are essential to better understand natural conversation behaviours.It is likely that while many behaviours reported in this study were used with the goal of improving communication, they may have been modified according to the social situation.

Speech Levels In Various Noise Environments Pdf Online

For example, interlocutors did speak louder and move towards each other, but not enough to compensate for the background noise increase. Such apparent inefficiency could relate to the social inappropriateness of shouting to a conversation partner or invading another individual’s space. Head orientation strategies may have been avoided for similar reasons; since the optimal head orientation for audibility is 30°, requiring listeners to turn their head somewhat away from their partner, it is possible that social constraints led individuals to avoid adjusting their head orientation. Alternatively, individuals may not have been aware of the SNR benefits of this strategy, and it is possible that with the noise surrounding the listeners any changes in speech-to-noise ratio elicited by re-orientation were not noticeable. It should be noted, however, that listeners did increase their looks toward their partner’s mouth in higher background noise levels, potentially indicating prioritisation of the visual cues gained by looking directly to the mouth over the acoustic cues provided by turning the head.While attempting to provide an ecologically valid conversation experience, the experimental situation may also have somewhat affected strategy use. The restriction that participants should not move the position of their chairs may have contributed to their minimal movement toward each other (although notably, chairs are often fixed in position). In addition, the use of speech-shaped noise may have masked the partner’s speech more strongly in the temporal domain than typical noises experienced in the background of everyday life (e.g., competing speech exhibiting envelope dips), reducing benefit from strategy use.

Finally, the fact that conversing participants did not initially know each other may have impacted their behaviour; individuals may use different/better compensatory behaviours during conversations with familiar than unfamiliar partners. Yet while individuals may be comfortable to verbalise their difficulty when talking to familiar partners, it is perhaps most critical to understand what they do in situations when they are not; indeed daily life is full of conversations with unfamiliar interlocutors: from the postman to the barista. As it is clear that the behaviours that individuals spontaneously use while conversing in noise do not provide a high level of acoustic benefit, further work could investigate whether training could be implemented to allow individuals to take advantage of potentially useful strategies (such as learning to orient the head for maximal signal-to-noise benefit).Future work could also begin addressing how conversation behaviours differ depending on the type of background noise, and how such behaviours are modified with increasing hearing impairment.

Audiology

In this study we used speech-shaped noise, and the constant masking may have made conversation particularly difficult. When listening against a background of other talkers, individuals may be able to ‘listen in the gaps’ to ameliorate difficulty, reducing reliance on facilitatory strategies. Furthermore, when par.